

Engineering Fundamentals III: Thermodynamics 59:009 Summer 2019

Professor Name: H. S. Udaykumar ("Uday") Professor Email: <u>ush@engineering.uiowa.edu</u>

Course Description

This is a core engineering class covering the fundamental aspects of thermodynamics, including work-energy-heat conversions, the first and second laws of thermodynamics, the concepts of pure substances and mixtures, and basic workings of heat engines and refrigeration cycles.

Course Objectives

- 1. Develop a basic understanding and knowledge of thermodynamics and its application to engineering,
- 2. Learn about energy and its conversion from one form to another,
- 3. Learn about properties of substances,
- 4. Learn the basic laws of thermodynamics and their applications, and
- 5. Develop a methodology for solving problems.

Course Materials & Resources

PRE-/CO-REQUISITES	:004:011/CHEM:1110 (P); 029:081/PHYS:1611 (P)
TEXTBOOK:	Moran, M.J., Shapiro, H.N., Boettner, D.D., and Bailey, M.B.,
	Fundamentals of Engineering Thermodynamics, 8th Edition, John
	Wiley and Sons, 2011.

PROBLEM SOLUTION PROCEDURE:

The methodology outlined in the APPENDIX B will be used in this course. The use of this methodology will help you find the final solution in the quickest time with the minimum errors. To add incentive, this methodology must be followed when solving homework problems and exam questions to receive full credit. In addition, the consultation room personnel will ask to see your attempted solution when you approach them with a question, and will go over the methodology to see how far you have progressed.

Grading

Three types of assignments will be given: homework, in-class problems, and in-class tests.

- 1. Homework will be assigned daily and must be done by each student individually (see below for misconduct policy).
- 2. Students will work in-class problems in teams during regular class time. These problems will be graded. Obviously, collaboration between team members is required for this type of assignment!

3. There will be in-class tests once each week to determine student progress. These test problems must be done by each student individually.

No exams, quizzes or other tests are scheduled outside of class time.

The class will be graded using letter grades, with +/- modifications to the grades. The following table indicates the grades and the percentages (rounded to 0.1%) associated with each grade.

A+	96.7
Α	93.3
A-	90.0
B+	86.7
В	83.3
В-	80.0
C+	76.7
С	73.3
C -	70.0
D+	66.7
D	63.3
D-	60.0

Class Schedule

The schedule shown in APPENDIX A is based on four regular length class sessions each week (90 minutes in length) and one long class session each week (3 hours in length). Since the long session will be on a different day each week depending on the class rotation selected (A, B, or C) this schedule simply assumes six ninety minute sessions each week.

Attendance Policy

Attendance at all classes and CIMBA sanctioned activities is MANDATORY. All unexcused absences will have the following consequences:

- a. 1st absence will result in a loss of a 1/3 of a letter grade in that class (1/2 in the summer program)
- b. 2nd (cumulative) absence will result in a loss of an entire letter grade in that class
- c. 3rd (cumulative) absence will result in a dismissal from the program.

Absences due to illness require a note from the CIMBA Office Staff. If a student is sick and cannot attend class, he/she must inform the CIMBA Staff immediately. Failure to do so will result in an unexcused absence.

Grievance Policy

Student concerns regarding this course should first be discussed with me, the faculty member teaching this course. If we can't resolve the complaint, you may contact the CIMBA Director, Stephanie Schnicker (319-3351041, <u>stephanie-schnicker@uiowa.edu</u>). The Director will review the details of the complaint and involve the Associate Dean of the Undergraduate Programs, as needed.

Academic Misconduct

The Tippie College of Business at the University of Iowa follows an honor code regarding academic misconduct. That code can be found at <u>https://tippie.uiowa.edu/sites/tippie.uiowa.edu/files/documents/tippie-honor-code.pdf</u> and includes cheating, plagiarism, unauthorized collaboration, obtaining an unfair advantage, forgery, facilitating academic dishonesty, and misrepresentation. Be sure you are familiar with this code. Students who exhibit academic dishonesty will receive a zero (0) for the assignment or examination involved and may receive an "F" for the class. All

incidents of cheating will be reported to the CIMBA staff, as well as to the Senior Associate Dean of the Tippie College of Business. The decision of the professor may be appealed to a Judicial Board. The Honor Code for the Tippie College of Business will determine the appropriate appeal process.

Accommodating Students with Disabilities/Academic Accommodations

A student seeking academic accommodations such as a modification of seating, testing, timing, etc. should first register with Student Disability Services, then contact the CIMBA Italy Office (<u>cimba-italy@uiowa.edu</u>) to make further arrangements. See <u>http://sds.studentlife.uiowa.edu</u> for more information.

Mental Health

Students are encouraged to be mindful of their mental health and seek help if they are feeling overwhelmed or incapable of meeting course expectations. For assistance with the class, students are encouraged to talk to the faculty member. For additional advice or support, students are encouraged to contact the CIMBA front office for assistance in seeking additional resources.

Sexual Harassment

Sexual Harassment: Sexual harassment subverts the mission of the University and threatens the well-being of students, faculty, and staff. The University will not tolerate sexual harassment, nor will it tolerate unwelcomed behavior of a sexual nature toward members of the University community when that behavior creates an intimidating or hostile environment for employment, education, on-campus living, or participation in a University activity. As a member of the university community you have a responsibility to report concerns of sexual harassment immediately to the CIMBA Director, Stephanie Schnicker, at 319-335-1041 or <u>stephanie-schnicker@uiowa.edu</u>.

Week #	Session #	Торіс
1 Intro to Energy, Work	1	Introduction; Definitions
and Heat		(Chapter 1)
1	2	Definitions (Chapter 1); Work,
		Kinetic and Potential Energy,
		Heat (Chapter 2)
1	3	I law for Closed Systems, (Chapter 2)
1	4	Cycles (Chapter 2)
		Properties: States, p-v-T
		diagrams, phase changes, Data, Tables (Chapter 3)
1	5	Properties: States, p-v-T
Ţ	5	diagrams, phase changes,
		Data, Tables (Chapter 3)
1	6	In-Class Test
2 The 1 st Law	1	Ideal Gas, Applications
		(Chapter 3)
2	2	Control volumes: Mass
		conservation; Energy conservation (Chapter 4)
2	3	Nozzle, Diffuser, Turbine,
2	5	Compressor, Pump, Heat
		exchanger, throttle (Chapter
		4)
2	4	Problems (Chapter 4)
2	5	Problems (Chapter 4)
2	6	In-Class Test
3 The 2 nd Law	1	Irreversibility and the 2 nd Law
3	2	Cycles: Carnot and Clausius statements
3	3	Entropy and changes in entropy
3	4	Internally reversible process;
		Closed systems
3	5	Open systems; Isentropic
		Process and Isentropic
		Efficiency
3	6	In-Class Test
4 Cycles	1	Rankine Cycle; Otto Cycle
4	2	Diesel Cycle; Brayton Cycle
4	3	Refrigerators and Heat
		Pumps

4	4	Solving Cycle Problems
4	5	Solving Cycle Problems
4	6	Review
4	Final	Final Exam

APPENDIX B: SOLUTION METHODOLOGY

KNOWN:

State problem briefly in your own words; do not repeat statement from text.

FIND:

Indicate what must be found.

THERMODYNAMIC SYSTEM AND PROCESS:

- 1. Sketch system
 - a. Identify system boundaries by a dashed line and indicate whether it is a control mass or a control volume.
 - b.Identify the Energy Transfer Processes (heat, work); draw arrows to indicate relevant processes and their assumed direction.
 - c. Show system properties or conditions provided in problem statement on the sketch.
- 2. Sketch the thermodynamic process on the pertinent process diagram showing, if possible, the following items:
 - a.Initial state
 - b.Final state
 - c.Process line(s)

ASSUMPTIONS:

List all pertinent simplifying assumptions.

PROPERTIES:

Compile property values needed for subsequent calculations and identify table from which they are obtained.

ANALYSIS:

1. Begin the analysis by introducing the relevant basic equations and then reducing them to their appropriate form based upon the stated assumptions.

2. Solve for the desired quantity. Note that when manipulating equations, it is better, easier, and faster to work with alphabetical characters.

3. Substitute numerical values and perform calculations to obtain desire results. Check units.

4. Clearly label your answer, with units, by a box. Report only significant digits. See your text for the proper unit abbreviations (e.g., MPa, kPa)

COMMENTS:

Carefully review your solution procedure and provide brief comments on the results. Some possible questions to answer are

- 1. What principles were involved?
- 2. Based upon physical insight, check the following:
 - Are the directions of heat and work correct?
 - Is the magnitude of the quantity reasonable?
 - Were the assumptions reasonable?
- 3 Are the results consistent with the process diagram?